
Available online at www.sciencedirect.com
www.elsevier.com/locate/ejor

European Journal of Operational Research 194 (2009) 418–431
Production, Manufacturing and Logistics

An economic order quantity model for deteriorating items with partially
permissible delay in payments linked to order quantity

Liang-Yuh Ouyang a,*, Jinn-Tsair Teng b, Suresh Kumar Goyal c, Chih-Te Yang d

a Department of Management Sciences and Decision Making, Tamkang University, Tamsui, Taipei 251, Taiwan
b Department of Marketing and Management Sciences, The William Paterson University of New Jersey, Wayne, NJ 07470-2103, USA

c Department of Decision Sciences and MIS, Concordia University, Montreal, Quebec, Canada H3G1M8
d Department of Industrial Engineering and Management, Ching Yun University, Jung-Li 320, Taiwan

Received 15 August 2006; accepted 15 December 2007
Available online 23 December 2007
Abstract

To attract more sales suppliers frequently offer a permissible delay in payments if the retailer orders more than or equal to a prede-
termined quantity W. In this paper, we generalize [Goyal, S.K., 1985. EOQ under conditions of permissible delay in payments. Journal of
the Operational Research Society 36, 335–338] economic order quantity (EOQ) model with permissible delay in payment to reflect the
following real-world situations: (1) the retailer’s selling price per unit is significantly higher than unit purchase price, (2) the interest rate
charged by a bank is not necessarily higher than the retailer’s investment return rate, (3) many items such as fruits and vegetables dete-
riorate continuously, and (4) the supplier may offer a partial permissible delay in payments even if the order quantity is less than W. We
then establish the proper mathematical model, and derive several theoretical results to determine the optimal solution under various sit-
uations and use two approaches to solve this complex inventory problem. Finally, a numerical example is given to illustrate the theo-
retical results.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classical inventory economic order quantity (or EOQ) model is based on the assumption that the supplier is paid for
the items immediately after the items are received. However, in practice, the supplier may provide the retailer many incen-
tives such as a cash discount to motivate faster payment and stimulate sales, or a permissible delay in payments to attract
new customers and increase sales. Goyal (1985) developed an EOQ model under the conditions of permissible delay in pay-
ments. Aggarwal and Jaggi (1995) extended Goyal’s (1985) model to consider the deteriorating items. Jamal et al. (1997)
further generalized Aggarwal and Jaggi’s (1995) model to allow for shortages. Teng (2002) then amended Goyal’s (1985)
model by considering the difference between unit price and unit cost, and found that it makes economic sense for a well-
established retailer to order less quantity and take the benefits of payment delay more frequently. Chang et al. (2003) then
established an EOQ model for deteriorating items under supplier trade credits linked to order quantity. Concurrently,
Chung and Liao (2004) studied a similar lot-sizing problem under supplier’s trade credits depending on the retailer’s order
quantity. Recently, Huang (2007) established an EOQ model in which the supplier offers a partially permissible delay in
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Table 1
Major characteristics of inventory models on selected researches

Author(s) and
published year

Allowing for
deterioration

Assuming unrealistic
p = c

Assuming unrealistic
Ik P Ie

Payment linked to order
quantity

Allowing for partial
payments

Aggarwal and Jaggi
(1995)

Yes Yes Yes No No

Jamal et al. (1997) Yes Yes Yes No No
Chang et al. (2003) Yes No No Yes No
Chung and Liao (2004) Yes Yes Yes Yes No
Goyal (1985) No Yes Yes No No
Huang (2007) No Yes Yes Yes Yes
Teng (2002) No No No No No
Present paper Yes No No Yes Yes
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payments when the order quantity is smaller than the predetermined quantity W. The major assumptions used in the above
research articles are summarized in Table 1.

In this paper, we develop a generalized mathematical model in which we complement the shortcoming of all the previous
models. The primary difference of this paper as compared to previous studies is that we first introduce a generalized inven-
tory model by relaxing the traditional EOQ model in the following four ways: (1) the retailer’s selling price per unit is higher
than its purchase unit cost, (2) the interest rate charged by a bank is not necessarily higher than the retailer’s investment
return rate, (3) many selling items deteriorate continuously such as fresh fruits and vegetables, and (4) the supplier may offer
a partial permissible delay in payments even if the order quantity is less than W. We then establish several theoretical results
to characterize the optimal solutions and determine the optimal solution under various situations and use two approaches to
solve this complex inventory problem. Finally, a numerical example is given to illustrate the theoretical results.

2. Mathematical formulation

For simplicity, we use the same notation and assumptions as in Huang’s (2007) model, except the selling price per unit p
and the deterioration rate h.
D the annual demand
A the ordering cost per order
W the quantity at which the fully delay payment permitted per order
c the purchasing cost per unit
h the unit holding cost per year excluding interest charge
p the selling price per unit
Ie the interest earned per dollar per year
Ik the interest charged per dollar in stocks per year
M the period of permissible delay in settling accounts
a the fraction of the delay payments permitted by the supplier per order, 0 6 a 6 1
h the deterioration rate, 0 6 h < 1
T the replenishment cycle time in years
Q the order quantity
TRC(T) the annual total relevant cost, which is a function of T

T* the optimal replenishment cycle time of TRC(T)
Q* the optimal order quantity

The inventory level decreases owing to demand as well as deterioration. Thus, the change of inventory level can be rep-
resented by the following differential equation:
dIðtÞ
dt
þ hIðtÞ ¼ �D; 0 < t < T ; ð1Þ
with the boundary condition I(T) = 0. The solution of Eq. (1) is
IðtÞ ¼ D
h
½ehðT�tÞ � 1�; 0 6 t 6 T : ð2Þ
Hence, the order quantity for each cycle is
Q ¼ Ið0Þ ¼ D
h
ðehT � 1Þ: ð3Þ
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From Eq. (3), we can obtain the time interval that W units are depleted to zero due to both demand and deterioration as
T W ¼
1

h
ln

h
D

W þ 1

� �
: ð4Þ
If Q P W (i.e., T P TW), then fully delayed payment is permitted. Otherwise, the partially delayed payment is permit-
ted. Hence, if Q < W (i.e., T < TW), then the retailer must take a loan (with the interest charged of Ik) to pay the supplier
the partial payment of (1 � a)cQ when the order is filled at time 0. From the constant sales revenue pD, the retailer will be
able to pay off the loan (1 � a)cQ at time (1 � a)(c/p)(ehT � 1)/h.

Note that (1) if T P TW, then the fully delayed payment is permitted, and (2) if the payoff time of the partial payment at

(1 � a)(c/p)(ehT � 1)/h is shorter or equal to the permissible delay M, then T 6 T 0 � 1
h ln hpM

ð1�aÞcþ 1
� �

, and vice versa. Note
that T0 > M. Consequently, based on the values of M, TW, and T0, we have three possible cases: (1) T0 > M P TW, (2)
T0 P TW > M, and (3) TW > T0 > M.

Case 1 T0 > M P TW
(a) Annual ordering cost = A
T .
(b) Annual stock holding cost excluding interest charge
¼ h
T

Z T

0

D
h
½ehðT�tÞ � 1�dt ¼ hD

h2T
ðehT � hT � 1Þ:
(c) Annual deteriorating cost =c
T ðQ� DT Þ ¼ cD

hT ðehT � hT � 1Þ.
(d) There are three sub-cases in terms of annual opportunity cost of the capital.
(i) M 6 T.
When the credit period M is shorter than or equal to the replenishment cycle time T, the retailer starts paying
the interest for the items in stock after time M with rate Ik. Hence, the annual interest payable is
cIk

T

Z T

M

D
h
½ehðT�tÞ � 1�dt ¼ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1�:

However, during time 0 through M, the retailer sells the goods and continues to accumulate sales revenue and
earns the interest with rate Ie. Therefore, the annual interest earned starts from time 0 to M and is pIeDM2

2T . Con-
sequently, the annual opportunity cost of capital in this sub-case is

cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1� � pIeDM 2

2T
:

(ii) TW 6 T 6M.
If TW 6 T 6M, there is no interest paid for financing inventory in stock, and the annual interest earned starts
from time 0 to M and is pIeDT

2
þ pIeDðM � T Þ ¼ pIeD M � T

2

� �
. Therefore, in this sub-case, we can obtain that the

annual opportunity cost of capital ¼ �pIeD M � T
2

� �
.

(iii) 0 < T < TW.
If T < TW, then the retailer must borrow the partial payment (1 � a)cQ at time 0 to pay the supplier, and then
pays off the loan from sales revenue at time (1 � a)(c/p)(ehT � 1)/h. Consequently, the interest charged on the
partial payment is from time 0 to (1 � a)(c/p)(ehT � 1)/h. Hence, the annual interest payable is
cIkð1� aÞ2ðc=pÞðehT � 1ÞQ
2hT

¼ cIkð1� aÞ2ðc=pÞD
2h2T

ðehT � 1Þ2: ð5Þ

Similarly, the interest earned starts from time (1 � a)(c/p)(ehT � 1)/h to M, and thus the annual interest earned is

pIeD
2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2 þ pIeDðM � T Þ

T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�: ð6Þ

As a result, in this sub-case, the annual opportunity cost of capital is

cIkð1� aÞ2ðc=pÞD
2h2T

ðehT � 1Þ2 � pIeD
2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2 � pIeDðM � T Þ

T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�:

ð7Þ

Therefore, the annual total relevant cost for the retailer in Case 1 can be expressed as
TRCðT Þ ¼
TRC1ðT Þ; M 6 T ;

TRC2ðT Þ; T W 6 T 6 M ;

TRC3ðT Þ; 0 < T < T W ;

8><
>: ð8Þ
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where
TRC1ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1� � pIeDM2

2T
; ð9Þ

TRC2ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ � pIeD M � T

2

� �
; ð10Þ
and
TRC3ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2 � pIeD

2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2

� pIeDðM � T Þ
T

½T � ð1� aÞðc=pÞðehT � 1Þ=h�: ð11Þ
Case 2 T0 P TW > M.
Similar to the approach used in Case 1, the annual total relevant cost for the retailer in this case can be expressed
as
TRCðT Þ ¼
TRC1ðT Þ; T W 6 T ;

TRC4ðT Þ; M 6 T < T W ;

TRC3ðT Þ; T 6 M ;

8><
>: ð12Þ
where
TRC4ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2 þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1�

� pIeD
2T
½M � ð1� aÞðc=pÞðehT � 1Þ=h�2: ð13Þ
Case 3 TW > T0 > M.

If TW > T P T0, then M < (1 � a)(c/p)(ehT � 1)/h. In this sub-case, the retailer must take a loan to pay the supplier the
partial payment of (1 � a)cQ at time 0, and then take another loan to pay the rest of acQ at time M. The first loan will be
paid from the revenue received until t = (1 � a)(c/p)(ehT � 1)/h (>M). Hence, the retailer gets the second loan at time M

but starts paying off from the sales revenue after t = (1 � a)(c/p)(ehT � 1)/h (>M). As a result, there is no interest earned,
and the annual interest payable is
cIkð1� aÞ2ðc=pÞðehT � 1ÞQ
2hT

þ cIkaQ
T
½ð1� aÞðc=pÞðehT � 1Þ=h�M � þ cIka2ðc=pÞðehT � 1ÞQ

2hT
: ð14Þ
For the other sub-case, we can also obtain the corresponding annual opportunity cost of capital. Therefore, we have the
annual total relevant cost for the retailer in Case 3 is
TRCðT Þ ¼

TRC1ðT Þ; T W 6 T

TRC5ðT Þ T 0 6 T < T W ;

TRC4ðT Þ; M 6 T 6 T 0;

TRC3ðT Þ; T 6 M ;

8>>><
>>>:

ð15Þ
where
TRC5ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� 2aþ 2a2ÞD

2h2T
ðehT � 1Þ2 þ cIkaDðehT � 1Þ

hT
½ð1� aÞðc=pÞ

� ðehT � 1Þ=h�M �: ð16Þ
3. Theoretical results

Now, we shall determine the optimal replenishment cycle time that minimizes the annual total relevant cost.
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Case 1 T0 > M P TW.

The first-order condition for TRC1(T) in (9) to be minimized is dTRC1(T)/dT = 0, which implies that
ðchþ hÞD
h2

ðhT ehT � ehT þ 1Þ þ cIkD

h2
½hT ehðT�MÞ � ehðT�MÞ þ 1� þ pIeDM 2

2
� cIkDM

h
� A ¼ 0: ð17Þ
To show that there exists a value of T in the interval [M,1) at which minimizes TRC1(T), we let
D1 �
ðchþ hÞD

h2
ðhMehM � ehM þ 1Þ þ pIeDM 2

2
� A: ð18Þ
Then we have the following lemma.

Lemma 1

(a) If D1 6 0, then the annual total relevant cost TRC1(T) has the unique minimum value at the point T = T1, where

T1 2 [M,1) and satisfies Eq. (17).

(b) If D1 > 0, then the annual total relevant cost TRC1(T) has a minimum value at the boundary point T = M.

Proof. See the Appendix A.

Similarly, the first-order necessary condition for TRC2(T) in (10) to be minimum is dTRC2(T)/dT = 0, which leads to
ðchþ hÞD
h2

ðhT ehT � ehT þ 1Þ þ pIeDT 2

2
� A ¼ 0: ð19Þ
To prove that there exists a value of T in the interval [TW,M] at which minimizes TRC2(T), we let
D2 �
ðchþ hÞD

h2
ðhT W ehT W � ehT W þ 1Þ þ pIeDT 2

W

2
� A: ð20Þ
It is obvious that D2 6 D1 if M P TW. Then we have following lemma. h

Lemma 2

(a) If D2 6 0 6 D1, then the annual total relevant cost TRC2(T) has the unique minimum value at the point T = T2, where

T2 2 [TW,M] and satisfies (19).

(b) If D2 > 0, then the annual total relevant cost TRC2 (T) has a minimum value at the lower boundary point T = TW.
(c) If D1 < 0, then the annual total relevant cost TRC2 (T) has a minimum value at the upper boundary point T = M.

Proof. The proof is similar to that in Lemma 1. Hence we omit it.

Likewise, the first-order necessary condition for TRC3(T) in (11) to be minimum is dTRC3(T)/dT = 0, which leads to
ðchþ hÞD
h2

ðhT ehT � ehT þ 1Þ þ cIkðc=pÞð1� aÞ2D

2h2
ðehT � 1Þð2hT ehT � ehT þ 1Þ � pIeD

2h
½T � ð1� aÞðc=pÞðehT � 1Þ=h�

� ½hT � ð1� aÞðc=pÞð2hT ehT � ehT þ 1Þ� þ pIeD
h
fhT 2½1� ð1� aÞðc=pÞehT �

þ ð1� aÞðc=pÞMðhT ehT � ehT þ 1Þg � A ¼ 0: ð21Þ
Again, to show that there exists a value of T which satisfies (21) and minimizes TRC3(T), we let
D3 �
ðchþ hÞD

h2
ðhT W ehT W � ehT W þ 1Þ þ cIkðc=pÞð1� aÞ2D

2h2
ðehT W � 1Þð2hT W ehT W � ehT W þ 1Þ � pIeD

2h
½T W � ð1� aÞ

� ðc=pÞðehT W � 1Þ=h�½hT W � ð1� aÞðc=pÞð2hT W ehT W � ehT W þ 1Þ� þ pIeD
h
fhT 2

W ½1� ð1� aÞðc=pÞehT W �

þ ð1� aÞðc=pÞMðhT W ehT W � ehT W þ 1Þg � A: ð22Þ
Then we have following lemma. h
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Lemma 3

(a) If D3 P 0, then the annual total relevant cost TRC3(T) has the unique minimum value at the point T = T3, where

T3 2 (0,TW) and satisfies (21).

(b) If D3 < 0, then the value of T 2 (0,TW) which minimizes TRC3(T) does not exist.

Proof. See the Appendix B.

From (20) and (22), it is obvious that D3 P D2 for 1 P a P 0. Moreover, since M P TW, we know that D1 P D2.
Consequently, combining Lemmas 1–3 and the fact that TRC1(M) = TRC2(M), we can obtain the following theoretical
result to determine the optimal cycle time T* for Case 1. h

Theorem 1. For T0 > M P TW, the optimal replenishment cycle time T* that minimizes the annual total relevant cost is given

as follows:
Situations TRC(T*) T*

D1 6 0 and D3 < 0 TRC1(T1) T1

D1 6 0 and D3 P 0 min{TRC1(T1),TRC3 (T3)} T1 or T3

D1 > 0, D2 < 0 and D3 P 0 min{TRC2(T2), TRC3(T3)} T2 or T3

D2 P 0 min{TRC2(TW),TRC3(T3)} TW orT3

D1 > 0 and D3 < 0 TRC2(T2) T2
Case 2 T0 P TW > M

Similar to the approach used in Case 1, the first-order condition for TRC1(T) (9) is the same as (17). Similarly, to show
that there exists a unique value of T in the interval [TW,1) at which TRC1(T) is minimized, we let
D4 �
ðchþ hÞD

h
ðT W ehT W � W =DÞ þ cIkD

h2
½hT W ehðT W �MÞ � ehðT W �MÞ þ 1� � cIkDM

h
þ pIeDM2

2
� A: ð23Þ
Consequently, we have following lemma.

Lemma 4
(a) If D4 6 0, then the annual total relevant cost TRC1(T) has the unique minimum value at the point T = T1, where

T1 2 [TW,1) and satisfies (17).

(b) If D4 > 0, then the annual total relevant cost TRC1(T) has a minimum value at the boundary point T = TW.

Proof. The proof is similar to that in Lemma 1. For simplicity, we omit it.

Likewise, the first-order condition for TRC4(T) in (13) is dTRC4(T)/dT = 0, which implies that
ðchþ hÞD
h2

ðhT ehT � ehT þ 1Þ þ cIkD

h2
½hT ehðT�MÞ � ehðT�MÞ þ 1� � cIkDM

h
þ cIkðc=pÞð1� aÞ2D

2h2
ðehT � 1Þð2hT ehT � ehT þ 1Þ

þ pIeD
2h
½M � ð1� aÞðc=pÞðehT � 1Þ=h�½hM þ ð1� aÞðc=pÞð2hT ehT � ehT þ 1Þ� �A¼ 0: ð24Þ
To prove that there exists a unique value of T in the interval [M,TW) at which TRC4(T) is minimized, we let
D5 �
ðchþ hÞD

h2
ðhMehM � ehM þ 1Þ þ cIkðc=pÞð1� aÞ2D

2h2
ðehM � 1Þð2hMehM � ehM þ 1Þ þ pIeD

2h
½M � ð1� aÞðc=pÞ

� ðehM � 1Þ=h�½hM þ ð1� aÞðc=pÞð2hMehM � ehM þ 1Þ� � A; ð25Þ
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and
Cond

D6 <

D4 <
D6 �
ðchþ hÞD

h2
ðhT W ehT W � ehT W þ 1Þ þ cIkðc=pÞð1� aÞ2D

2h2
ðehT W � 1Þð2hT W ehT W � ehT W þ 1Þ

þ pIeD
2h
½M � ð1� aÞðc=pÞðehT W � 1Þ=h�½hM þ ð1� aÞðc=pÞð2hT W ehT W � ehT W þ 1Þ� � A: ð26Þ
Then we have the following lemma. h

Lemma 5

(a) If D5 6 0 6 D6, then the annual total relevant cost TRC4(T) has the unique minimum value at the point T = T4, where

T4 2 [M,TW) and satisfies (24).
(b) If D5 > 0, then the annual total relevant cost TRC4(T) has a minimum value at the lower boundary point T = M.

(c) If D6 < 0, then the value of T 2 [M,TW) which minimizes TRC4(T) does not exist.
Proof. The proof of either (a) or (b) is similar to that in Lemma 1. However, the proof of (c) is similar to that in Lemma 3(b).
Since the first-order condition for TRC3(T) in (11) to be minimized is dTRC3(T)/dT = 0 which is the same as in (21), we

have the following lemma: h

Lemma 6

(a) If D5 P 0, then the annual total relevant cost TRC3(T) has the unique minimum value at the point T = T3, where

T3 2 (0,M] and satisfies (21).

(b) If D5 < 0, then the annual total relevant cost TRC3 (T) has a minimum value at the boundary point T = M.

Proof. We omit the proof because it is similar to that in Lemma 1.

From (23) and (26), it is obvious that D6 P D4 for 1 P a P 0. Moreover, since M < TW, we know that D6 P D5.
Consequently, combining Lemmas 4–6 and the facts that TRC4(M) = TRC3(M), we can obtain a theoretical result to
determine the optimal cycle time T* for Case 2. That is, we have the following result. h

Theorem 2. For T0 P TW > M, the optimal replenishment cycle time T* that minimizes the annual total relevant cost is given

as follows:
itions TRC(T*) T*

0 min{TRC1(T1),TRC3(M)} T1 or M

0 and D5 P 0 min{TRC1(T1),TRC3(T3)} T1 or T3
D4 P 0 and D5 P 0 min{TRC1(TW),TRC3(T3)} TW or T3
D4 < 0, D5 < 0 and D6 P 0 min{TRC1(T1), TRC4(T4)} T1 or T4
Case 3 TW > T0 > M

From Lemma 4, we know that if D4 6 0, then the annual total relevant cost TRC1(T) in (9) has the unique minimum
value at the point T = T1, where T1 2 [TW,1) and satisfies (17). Otherwise, TRC1(T) has a minimum value at the boundary
point T = TW.

Next, the first-order condition for TRC5(T) in (16) to be minimized is dTRC5(T)/dT = 0, which implies that

D4 P 0 and D5 < 0 min{TRC1(TW),TRC4(T4)} TW or T4
ðchþ hÞD
h2

ðhT ehT � ehT þ 1Þ þ cIkðc=pÞð1� 2aþ 2a2ÞD
2h2

ðehT � 1Þð2hT ehT � ehT þ 1Þ þ cIkaD
h
fðhT ehT � ehT þ 1Þ

� ½ð1� aÞðc=pÞðehT � 1Þ=h�M � þ ðehT � 1Þð1� aÞðc=pÞT ehTg � A

¼ 0: ð27Þ

To prove that there exists a value of T in the interval [T0, TW) at which minimizes TRC5(T), we let
D7 �
ðchþ hÞD

h2
ðhT 0ehT 0 � ehT 0 þ 1Þ þ cIkðc=pÞð1� 2aþ 2a2ÞD

2h2
ðehT 0 � 1Þð2hT 0ehT 0 � ehT 0 þ 1Þ þ cIkaD

h

�fðhT 0ehT 0 � ehT 0 þ 1Þ½ð1� aÞðc=pÞðehT 0 � 1Þ=h�M � þ ðehT 0 � 1Þð1� aÞðc=pÞT 0ehT 0g � A; ð28Þ
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and
Situa

D4 <

D4 P
D8 �
ðchþ hÞD

h2
ðhT W ehT W � ehT W þ 1Þ þ cIkðc=pÞð1� 2aþ 2a2ÞD

2h2
ðehT W � 1Þð2hT W ehT W � ehT W þ 1Þ þ cIkaD

h

�fðhT W ehT W � ehT W þ 1Þ½ð1� aÞðc=pÞðehT W � 1Þ=h�M � þ ðehT W � 1Þð1� aÞðc=pÞT W ehT W g � A: ð29Þ

Consequently, we have the following lemma:

Lemma 7

(a) If D7 6 0 6 D8, then the annual total relevant cost TRC5(T) has the unique minimum value at the point T = T5, where
T5 2 [T0,TW) and satisfies (27).

(b) If D7 > 0, then the annual total relevant cost TRC5 (T) has a minimum value at the lower boundary point T = T0 .

(c) If D8 < 0, then the value of T 2 [T0,TW) minimizes TRC5(T) does not exist.
Proof. The proof of either (a) or (b) is similar to that in Lemma 1. As to (c), it is similar to that in Lemma 3(b).

Likewise, the first-order condition for TRC4(T) in (13) to be minimized is dTRC4(T)/dT = 0, which is the same as in
(24). To prove that there exists a unique value of T in the interval [M,T0] at which minimizes TRC4(T), we let h

ðchþ hÞD cI ðc=pÞð1� 2aþ 2a2ÞD cI aD

D9 �

h2
ðhT 0ehT 0 � ehT 0 þ 1Þ þ k

2h2
ðehT 0 � 1Þð2hT 0ehT 0 � ehT 0 þ 1Þ þ k

h

�fðhT 0ehT 0 � ehT 0 þ 1Þ½ð1� aÞðc=pÞðehT 0 � 1Þ=h�M � þ ðehT 0 � 1Þð1� aÞðc=pÞT 0ehT 0g � A: � ð30Þ
Then we have the following lemma:

Lemma 8

(a) If D5 6 0 6 D9, then the annual total relevant cost TRC4(T) has the unique minimum value at the point T = T4, where

T4 2 [M,T0] and satisfies (24).

(b) If D5 > 0, then the annual total relevant cost TRC4 (T) has a minimum value at the lower boundary point T = M.

(c) If D9 < 0, then the annual total relevant cost TRC4 (T) has a minimum value at the boundary point T = T0.
Proof. The proof is similar to that in Lemma 1.

From Lemma 6, we know that if D5 P 0, then the annual total relevant cost TRC3(T) has the unique minimum value at
the point T = T3, where T3 2 (0,M] and satisfies (21). Otherwise, D5 < 0, then the annual total relevant cost TRC3(T) has a
minimum value at the boundary point T = M.

From (28) and (30), it is obvious that D9 P D7. Since TW > T0 > M, we know that D9 P D5 and D8 P D7 P D5.
Consequently, combining Lemmas 4, 6, 7, and 8 and the fact that TRC4(M) = TRC3(M), we can obtain the following
theoretical result to determine the optimal cycle time T* for Case 3. h

Theorem 3. For TW > T0 > M, the optimal replenishment cycle time T* that minimizes the annual total relevant cost is given as

follows:
tion Conditions TRC(T*) T*

0 D8 < 0 and D9 < 0 min{TRC1(T1), TRC4(T0)} T1 or T0

D8 < 0 and D9 P 0 min{TRC1(T1),TRC4(T4)} T1 or T4

D8 P 0 and D9 < 0 min{TRC1(T1),TRC4(T0), TRC5(T5)} T1 or T0 or T5

D7 < 0, D8 P 0 and D9 P 0 min{TRC1 (T1),TRC4(T4),TRC5(T5)} T1 or T4 or T5

D5 < 0 and D7 P 0 min{TRC1(T1),TRC4(T4), TRC5(T0)} T1 or T4 or T0

D5 P 0 min{TRC1(T1),TRC3(T3),TRC5(T0)} T1 or T3 or T0

0 D8 < 0 and D9 < 0 min{TRC1(TW), TRC4(T0)} TW or T0

D8 < 0 and D9 P 0 min{TRC1(TW),TRC4(T4)} TW or T4

D8 P 0 and D9 < 0 min{TRC1(TW),TRC4(T0), TRC5(T5)} TW or T0 or T5

D7 < 0, D8 P 0 and D9 P 0 min{TRC1 (TW),TRC4(T4),TRC5(T5)} TW or T4 or T5

D5 < 0 and D7 P 0 min{TRC1(TW),TRC4(T4), TRC5(T0)} TW or T4 or T0

D5 P 0 min{TRC1(TW),TRC3(T3),TRC5(T0)} TW or T3 or T0
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4. Some special cases

In this section, we discuss several special cases and make descriptions of these cases.

(i) When h ? 0 and p = c, the model can be reduced to EOQ model under partially payments delay and the result is
similar to Huang (2007).

(ii) When a = 0, the model is similar to Chang et al. (2003).
(iii) When a = 0 and p = c, the model can be reduced to Chung and Liao (2004).
(iv) When a = 1, p = c and W = 0, the model is similar to Aggarwal and Jaggi (1995).
(v) When h ? 0, a = 1 and W = 0 the model can be reduced to EOQ model under payments delay and the result is the

same as that in Teng (2002).
(vi) When h ? 0, a = 1, p = c and W = 0, the model is the same as Goyal (1985).

Therefore, our model is in general framework that includes numerous previous models such as Goyal (1985), Aggarwal
and Jaggi (1995), Teng (2002), Chang et al. (2003), Chung and Liao (2004) and Huang (2007), as special cases.

5. Solution procedures

In this section, we develop two solution approaches to solve the problem. The first approach is to use any standard non-
linear programming software to solve the following 10 sub-cases in which the objective function is non-linear but the con-
straints are linear. Consequently, the non-linear problem in each sub-case should have a unique global minimum. Based on
T0 > M, and the values of M, TW, and T0, we have three possible sets of sub-problems out of 10 sub-cases: (1)
T0 > M P TW, (2) T0 P TW > M, and (3) TW > T0 > M which are shown below.

Case 1 T0 > M P TW
S-1 Min TRC1ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1� � pIeDM 2

2T

s:t: T P M :

S-2 Min TRC2ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ � pIeD M � T

2

� �

s:t: T W 6 T 6 M :

S-3 Min TRC3ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2

� pIeD
2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2

� pIeDðM � T Þ
T

½T � ð1� aÞðc=pÞðehT � 1Þ=h�

s:t: 0 6 T 6 T W :
Case 2 T0 P TW > M
S-4 Min TRC1ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1� � pIeDM 2

2T
s:t: T P T W :

S-5 Min TRC4ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ

þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2 þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1�

� pIeD
2T
½M � ð1� aÞðc=pÞðehT � 1Þ=h�2

s:t: M 6 T 6 T W :
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S-6 Min TRC3ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2

� pIeD
2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2

� pIeDðM � T Þ
T

½T � ð1� aÞðc=pÞðehT � 1Þ=h�

s:t: 0 6 T 6 M :
Case 3 TW > T0 > M
S-7 Min TRC1ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1� � pIeDM2

2T
s:t: T P T W :

S-8 Min TRC5ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ

þ cIkðc=pÞð1� 2aþ 2a2ÞD
2h2T

ðehT � 1Þ2 þ cIkaDðehT � 1Þ
hT

½ð1� aÞðc=pÞðehT � 1Þ=h�M �

s:t: T 0 6 T 6 T W :

S-9 Min TRC4ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ

þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2 þ cIkD

h2T
½ehðT�MÞ � hðT �MÞ � 1�

� pIeD
2T
½M � ð1� aÞðc=pÞðehT � 1Þ=h�2

s:t: M 6 T 6 T 0:

S-10 Min TRC3ðT Þ ¼
A
T
þ ðchþ hÞD

h2T
ðehT � hT � 1Þ þ cIkðc=pÞð1� aÞ2D

2h2T
ðehT � 1Þ2

� pIeD
2T
½T � ð1� aÞðc=pÞðehT � 1Þ=h�2

� pIeDðM � T Þ
T

½T � ð1� aÞðc=pÞðehT � 1Þ=h�

s:t: 0 6 T 6 M :
The decision rule to determine the optimal solution is as follows. If T0 > M P TW, then we solve sub-problems S-1, S-2
and S-3, and then compare their values to find the optimal minimum solution. If T0 P TW > M, then we solve sub-
problems S-4, S-5 and S-6, and then find the optimal minimum solution among them. Finally, if TW > T0 > M, then we
solve sub-problems S-7, S-8, S-9 and S-10, and then the optimal minimum solution can be found by comparing those four
values.

The second approach is to develop the following algorithm to solve this complex inventory problem by using the
characteristics of Theorems 1–3 above.

Algorithm

Step 1 Compare the values of T0, M and TW. If T0 > M P TW, then go to Step 2. If T0 P TW > M, then go to Step 3.
Otherwise, if TW > T0 > M, then go to Step 4.

Step 2 Calculate D1, D2 and D3 which are shown as in Eqs. (18), (20) and (22), respectively.

(1) If D1 < 0 and D3 < 0, then TRC(T*) = TRC1 (T1) and T* = T1. Go to Step 5.
(2) If D1 < 0 and D3 P 0, then TRC(T*) = min{TRC1(T1),TRC3(T3)} and T* = T1 or T3. Go to Step 5.
(3) If D1 P 0, D2 < 0 and D3 P 0, then TRC(T*) = min{TRC2(T2),TRC3(T3)} and T* = T2 or T3. Go to Step 5.
(4) If D2 P 0, then TRC(T*) = min{TRC2(TW), TRC3(T3)} and T* = TW or T3. Go to Step 5.
(5) If D1 P 0 and D3 < 0, then TRC(T*) = TRC2(T2) and T* = T2. Go to Step 5.
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Step 3. Calculate D4, D5 and D6 which are shown as in Eqs. (23), (25) and (26), respectively.

(1) If D6 < 0, then TRC(T*) = min{TRC1(T1), TRC3(M)} and T* = T1 or M. Go to Step 5.
(2) If D4 < 0, D5 < 0 and D6 P 0, then TRC(T*) = min{TRC1(T1),TRC4(T4)} and T* = T1 or T4. Go to Step 5.
(3) If D4 < 0 and D5 P 0, then TRC(T*) = min{TRC1(T1),TRC3(T3)} and T* = T1 or T3. Go to Step 5.
(4) If D4 P 0 and D5 < 0, then TRC(T*) = min{TRC1(TW),TRC4(T4)} and T* = TW or T4. Go to Step 5.
(5) If D4 P 0 and D5 P 0, then TRC(T*) = min{TRC1(TW),TRC3(T3)} and T* = TW or T3. Go to Step 5.
Step 4 Calculate D4, D5, D7, D8 and D9 which are shown as in Eqs. (23), (25), (28), (29) and (30), respectively. If D4 < 0,
then go to Step 4-1. Otherwise, go to Step 4-2.
Step 4-1
(1) IfD8 < 0 and D9 < 0, then TRC(T*) = min {TRC1(T1),TRC4(T0)} and T* = T1 or T0. Go to Step 5.
(2) If D8 < 0 and D9 P 0, then TRC(T*) = min{TRC1(T1),TRC4(T4)} and T* = T1 or T4. Go to Step 5.
(3) If D8 P 0 and D9 < 0, then TRC(T*) = min{TRC1(T1),TRC4(T0),TRC5(T5)} and T* = T1 or T0 or T5. Go

to Step 5.
(4) If, D7 < 0, D8 P 0 and D9 P 0, then TRC(T*) = min{TRC1(T1),TRC4(T4),TRC5(T5)} and T* = T1 or T4 or

T5. Go to Step 5.
(5) If D5 < 0 and D7 P 0, then TRC(T*) = min{TRC1(T1),TRC4(T4),TRC5(T0)} and T* = T1 or T4 or T0. Go

to Step 5.
(6) If D5 P 0, then TRC(T*) = min{TRC1(T1), TRC3(T3),TRC5(T0)} and T* = T1 or T3 or T0. Go to Step 5.
Step 4-2
(1) If D8 < 0 and D9 < 0, then TRC(T*) = min {TRC1(TW),TRC4(T0)} and T* = TW or T0. Go to Step 5.
(2) If D8 < 0 and D9 P 0, then TRC(T*) = min{TRC1(TW),TRC4(T4)} and T* = TW or T4. Go to Step 5.
(3) If D8 P 0 and D9 < 0, then TRC(T*) = min{TRC1(TW),TRC4(T0),TRC5(T5)} and T* = TW or T0 or T5. Go

to Step 5.
(4) If D7 < 0, D8 P 0 and D9 P 0, then TRC(T*) = min{TRC1(TW),TRC4(T4),TRC5(T5)} and T* = TW or T4

or T5. Go to Step 5.
(5) If D5 < 0 and D7 P 0, then TRC(T*) = min{TRC1(TW),TRC4(T4),TRC5(T0)} and T* = TW or T4 or T0. Go

to Step 5.
(6) If D5 P 0, then TRC(T*) = min{TRC1(TW), TRC3(T3),TRC5(T0)} and T* = TW or T3 or T0. Go to Step 5.
Step 5 Stop.
6. Numerical examples

To illustrate the results, we use the same numerical example as shown in Huang (2007). However, we assume that the
selling price per unit p is $50 and deteriorating rate h = 0.05.

Example. GivenA = $50/order, D = 1000 unit/year, h = $5/unit/year, Ik = $ 0.1/$/year, Ie = $0.07/$/year, and M = 0.12
year, we obtain the optimal cycle time and the optimal order quantity for different parameters of a(0.2, 0.5, 0.8), W(50, 150,
250) and c(10, 20, 30) as shown in Table 2.

Based on the computational results as shown in Table 2, we can obtain the following managerial insights:

(1) If the retailer’s optimal order quantity is less than W (i.e., the partially delayed payment is permitted) and the fraction
of the delay payments permitted a is increasing, then the optimal replenishment cycle time T* and order quantity Q*

will be increasing while the optimal annual total relevant cost TRC(T*) will be decreasing.
(2) When the quantity at which the fully delayed payment is permitted per order W increases, the retailer should take the

partially delayed payment (i.e., the optimal order quantity Q* < W) instead of the fully delayed payment (i.e.,
Q* P W).

(3) In general, when the purchasing cost per unit c increases, then the optimal replenishment cycle time T* and order
quantity Q* will be decreasing while the optimal annual total relevant cost TRC(T*) will be increasing. However,
for the case with a = 0.2 and W = 150 in the numerical example, the optimal replenishment cycle and order quantity
are fixed and are not affected by the increase in the unit purchase price. The reason is that in this situation, the retailer



Table 2
Optimal solutions under different parametric values

a W c T* Q* TRC(T*)

0.2 50 10 T2 = 0.1053 105.574 529.193
20 T2 = 0.1025 102.750 555.206
30 T2 = 0.0999 100.142 580.542

150 10 TW = 0.1494 150.000 581.840
20 TW = 0.1494 150.000 621.195
30 TW = 0.1494 150.000 661.550

250 10 T3 = 0.1051 105.327 598.600
20 T3 = 0.1016 101.886 697.827
30 T3 = 0.0982 98.392 799.836

0.5 50 10 T2 = 0.1053 105.574 529.193
20 T2 = 0.1025 102.750 555.206
30 T2 = 0.0999 100.142 580.542

150 10 T3 = 0.1052 105.473 572.097
20 TW = 0.1494 150.000 621.195
30 TW = 0.1494 150.000 661.550

250 10 T3 = 0.1052 105.473 572.097
20 T3 = 0.1016 101.886 697.827
30 T3 = 0.0992 99.435 713.608

0.8 50 10 T2 = 0.1053 105.574 529.193
20 T2 = 0.1025 102.750 555.206
30 T2 = 0.0999 100.142 580.542

150 10 T3 = 0.1053 105.555 546.164
20 T3 = 0.1024 102.689 589.386
30 T3 = 0.0998 100.020 632.151

250 10 T3 = 0.1053 105.555 546.164
20 T3 = 0.1024 102.689 589.386
30 T3 = 0.0998 100.020 632.151
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trades off the benefits of full delay in payment against the partial delay in payment and always enjoys the full delay in
payment.
7. Conclusion

In this paper, we developed an EOQ model under the conditions of permissible delay in payment by considering the
following situations simultaneously: (1) the retailer’s selling price per unit is higher than the unit purchase price, (2) the
interest rate charged by a bank is not necessarily higher than the retailer’s investment return rate, (3) many selling items
deteriorate continuously such as fresh fruits and vegetables, and (4) the supplier may offer a partial permissible delay in
payments even if the order quantity is less than W. Furthermore, we established several theoretical results which are given
as Theorems 1–3 to determine the optimal solution under various conditions. Finally, a numerical example is given to illus-
trate the theoretical results and obtain some managerial insights. Our model is in general framework that includes numer-
ous previous models such as Goyal (1985), Aggarwal and Jaggi (1995), Teng (2002), Chang et al. (2003), Chung and Liao
(2004), Huang (2007) and Teng et al. (2007) as special cases. We believe that our work will provide a basic foundation for
the further study of this kind of important inventory models with trade credits.

The proposed model can be extended in several ways. For instance, we may extend the model for deteriorating items
with a two-parameter Weibull distribution. Also, we could consider the demand as a function of selling price as well as
quality such as in Teng et al. (2005, 2006). Finally, we could generalize the model to allow for shortages, quantity dis-
counts, discount and inflation rates, and others.
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Appendix A. Proof of Lemma 1

To prove Lemma 1, we set
F 1ðT Þ ¼
ðchþ hÞD

h2
ðhT ehT � ehT þ 1Þ þ cIkD

h2
½hT ehðT�MÞ � ehðT�MÞ þ 1� þ pIeDM2

2
� cIkDM

h
� A; T 2 ½M ;1Þ: ðA1Þ
Taking the derivative of F1(T) with respect to T 2 (M,1), we get
dF 1ðT Þ
dT

¼ ½ðchþ hÞehT þ cIkehðT�MÞ�DT > 0; ðA2Þ
Thus F1(T) is a strictly increasing function of T in the interval [M,1). Moreover, from (A1), we know that
F 1ðMÞ ¼ D1; and lim
T!1

F 1ðT Þ ¼ þ1: ðA3Þ
Therefore, if F1(M) = D1 6 0, then by applying the Intermediate Value Theorem, there exists a unique T1 2 [M,1) such
that F1(T1) = 0. Furthermore, taking the second -order derivative of TRC1(T) with respect to T at the point T1 we have
d2TRC1ðT Þ
dT 2

����
T¼T 1

¼ D
T 1

½ðchþ hÞehT 1 þ cIkehðT 1�MÞ� > 0: ðA4Þ
Thus, T1 2 [M,1) is the unique minimum solution to TRC1(T).
On the other hand, if F1(M) = D1 > 0 then we have F1(T) > 0 for all T 2 [M,1). Consequently, we know that

dTRC1ðT Þ
dT ¼ F 1ðT Þ

T 2 > 0 for all T 2 (M,1). Thus, TRC1(T) is a strictly increasing function of T in the interval [M,1). Therefore,
TRC1(T) has a minimum value at the boundary point T = M. This completes the proof. h

Appendix B. Proof of Lemma 3

To prove Lemma 3, we set
F 3ðT Þ ¼
ðchþ hÞD

h2
ðhT ehT � ehT þ 1Þ þ cIkðc=pÞð1� aÞ2D

2h2
ðehT � 1Þð2hT ehT � ehT þ 1Þ � pIeD

2h
½T � ð1� aÞðc=pÞ

� ðehT � 1Þ=h�½hT � ð1� aÞðc=pÞð2hT ehT � ehT þ 1Þ� þ pIeD
h
fhT 2½1� ð1� aÞðc=pÞehT � þ ð1� aÞ

� ðc=pÞMðhT ehT � ehT þ 1Þg � A: ðB1Þ
Taking the first derivative of F3(T) with respect to T 2 (0, TW), we have
dF 3ðT Þ
dT

¼ fðchþ hÞehT þ ðcIk � cIeÞðc=pÞð1� aÞ2ehT ð2ehT � 1Þ þ pIe½1þ ð1� aÞðc=pÞehT hM �gDT : ðB2Þ
Since
ðchþ hÞehT þ ðcIk � cIeÞðc=pÞð1� aÞ2ehT ð2ehT � 1Þ þ pIe½1þ ð1� aÞðc=pÞehT hM �

P ðchþ hÞ þ ðcIk � cIeÞðc=pÞð1� aÞ2 þ pIe½1þ ð1� aÞðc=pÞhM �

¼ ðchþ hÞ þ cIkðc=pÞð1� aÞ2 þ pIe � cIeðc=pÞð1� aÞ2 þ pIeð1� aÞðc=pÞhM �

> ðchþ hÞ þ cIkðc=pÞð1� aÞ2 þ pIe � cIe þ pIeð1� aÞðc=pÞhM � > 0;
we obtain dF 3ðT Þ
dT > 0, which implies F3(T) is a strictly increasing function of T in the interval (0,TW). Moreover, from (B1),

we know that
lim
T!0

F 3ðT Þ ¼ �A < 0; and lim
T!T W �

F 3ðT Þ ¼ D3: ðB3Þ
Therefore, if limT!T W �F 3ðT Þ ¼ D3 P 0, then by applying the Intermediate Value Theorem, there exists a unique
T3 2 (0,TW) such that F3(T) = 0. Furthermore, taking the second derivative of TRC3(T) with respect to T at the point
T3, we have
d2TRC3ðT Þ
dT 2

����
T¼T 3

¼ D
T 3

fðchþ hÞehT 3 þ ðcIk � cIeÞðc=pÞð1� aÞ2ehT 3ð2ehT 3 � 1Þ þ pIe½1þ ð1� aÞðc=pÞehT 3hM �g > 0:

ðB4Þ
Thus, T3 2 (0,TW) is the unique minimum solution to TRC3(T).
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However, if limT!T W �F 3ðT Þ ¼ D3 < 0, then F3 (T) < 0 for all T 2 (0, TW). Consequently, we have dTRC3ðT Þ
dT ¼ F 3ðT Þ

T 2 < 0 for
all T 2 (0, TW). Thus TRC3 (T) is a strictly decreasing function of T in the open interval (0, TW). Therefore, we cannot find
a value of T in the open interval (0,TW) that minimizes TRC3(T). This completes the proof. h
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